A weighted mean shift, normalized cuts initialized color gradient based geodesic active contour model: applications to histopathology image segmentation

نویسندگان

  • Jun Xu
  • Andrew Janowczyk
  • Sharat Chandran
  • Anant Madabhushi
چکیده

While geodesic active contours (GAC) have become very popular tools for image segmentation, they are sensitive to model initialization. In order to get an accurate segmentation, the model typically needs to be initialized very close to the true object boundary. Apart from accuracy, automated initialization of the objects of interest is an important pre-requisite to being able to run the active contour model on very large images (such as those found in digitized histopathology). A second limitation of GAC model is that the edge detector function is based on gray scale gradients; color images typically being converted to gray scale prior to computing the gradient. For color images, however, the gray scale gradient results in broken edges and weak boundaries, since the other channels are not exploited for the gradient determination. In this paper we present a new geodesic active contour model that is driven by an accurate and rapid object initialization scheme-weighted mean shift normalized cuts (WNCut). WNCut draws its strength from the integration of two powerful segmentation strategies–mean shift clustering and normalized cuts. WNCut involves first defining a color swatch (typically a few pixels) from the object of interest. A multi-scale mean shift coupled normalized cuts algorithm then rapidly yields an initial accurate detection of all objects in the scene corresponding to the colors in the swatch. This detection result provides the initial boundary for GAC model. The edge-detector function of the GAC model employs a local structure tensor based color gradient, obtained by calculating the local min/max variations contributed from each color channel (e.g. R,G,B or H,S,V). Our color gradient based edge-detector function results in more prominent boundaries compared to classical gray scale gradient based function. We evaluate segmentation results of our new WNCut initialized color gradient based GAC (WNCut-CGAC) model against a popular region-based model (Chan & Vese) on a total of 60 digitized histopathology images. Across a total of 60 images, the WNCut-CGAC model yielded an average overlap, sensitivity, specificity, and positive predictive value of 73%, 83%, 97%, 84%, compared to the Chan & Vese model which had corresponding values of 64%, 75%, 95%, 72%. The rapid and accurate object initialization scheme (WNCut) and the color gradient make the WNCut-CGAC scheme, an ideal segmentation tool for very large, color imagery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high-throughput active contour scheme for segmentation of histopathological imagery

In this paper a minimally interactive high-throughput system which employs a color gradient based active contour model for rapid and accurate segmentation of multiple target objects on very large images is presented. While geodesic active contours (GAC) have become very popular tools for image segmentation, they tend to be sensitive to model initialization. A second limitation of GAC models is ...

متن کامل

High-Throughput Prostate Cancer Gland Detection, Segmentation, and Classification from Digitized Needle Core Biopsies

We present a high-throughput computer-aided system for the segmentation and classification of glands in high resolution digitized images of needle core biopsy samples of the prostate. It will allow for rapid and accurate identification of suspicious regions on these samples. The system includes the following three modules: 1) a hierarchical frequency weighted mean shift normalized cut (HNCut) f...

متن کامل

Implementation of Normlized Cut Algoritham for Image Segmentation

Image Segmentation is an important image processing technique which is used to analyse colour, texture etc. Image Segmentation is used to separate an image into several “meaningful” parts. Normalized cut (Ncut) is based on graph cut technique to solve the image Segmentation problems. Rather than just focusing on local features and their consistencies, Ncut consider the global impression of an i...

متن کامل

Graph Cutting Tumor Images

A new proposed method of fully automatic processing frameworks is based on graph-cut active contour algorithms. This paper addresses the problem of segmenting a liver and tumor regions from the abdominal CT images. A predicate is defined for measuring the evidence for a boundary between two regions using a Graph-based representation of the image. The algorithm is applied to image segmentation u...

متن کامل

Directional geodesic active contour for image segmentation

By incorporating the image gradient directional information into the geodesic active contour model, we propose a novel active contour model called directional geodesic active contour, which has the advantage of selectively detecting the image edges with different gradient directions. The experiment results show the high performance of the proposed active contour in image segmentation, especiall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010